Referencias

Agencia de Calidad de la Educación. (2023a). Informe de resultados educativos 2022. Tomo 2: Factores asociados a los resultados educativos. Gobierno de Chile, Agencia de Calidad de la Educación. https://www.agenciaeducacion.cl/
Agencia de Calidad de la Educación. (2023b). Informe nacional de resultados: Sistema de evaluación de aprendizajes 2023. Agencia de Calidad de la Educación.
Agencia de Calidad de la Educación. (2023c). Resultados nacionales y factores asociados: Informe 2023. Gobierno de Chile.
Aguinis, H., Gottfredson, N. M., & Culpepper, S. A. (2013). Best-practice recommendations for estimating cross-level interaction effects using multilevel modeling. Journal of Management, 39(6), 1490–1528. https://doi.org/10.1177/0149206313478188
Arruda Raposo, I. P. de, & Gonçalves, M. B. C. (2020). Peer effects and educational achievement: Evidence of causal effects using age at school entry as exogenous variation for peer quality. EconomiA, 21(1), 18–37.
Ashcraft, M. H. (2002). Math anxiety: Personal, educational, and cognitive consequences. Current Directions in Psychological Science, 11(5), 181–185. https://doi.org/10.1111/1467-8721.00196
Ashcraft, M. H., & Krause, J. A. (2007). Working memory, math performance, and math anxiety. Psychonomic Bulletin & Review, 14(2), 243–248.
Ashcraft, M. H., & Moore, A. M. (2009). Mathematics anxiety and the affective drop in performance. Journal of Psychoeducational Assessment, 27(3), 197–205. https://doi.org/10.1177/0734282908330580
Ashcraft, M. H., & Ridley, K. (2005). Math anxiety and its cognitive consequences: A tutorial review. In J. I. D. Campbell (Ed.), The handbook of mathematical cognition (pp. 315–327). Psychology Press.
Atalah, E., Cordero, M., Guerra, M. E., Quezada, S., Carrasco, X., & Romo, M. (2014). Monitoreo de los indicadores del programa “chile crece contigo” 2008–2011. Revista Chilena de Pediatría, 85(5), 565–573. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0370-41062014000500007
Banco Mundial. (2021). La billonaria deuda con los estudiantes en pandemia. https://www.bancomundial.org/es/news/feature/2021/12/23/la-billonaria-deuda-con-los-estudiantes-en-pandemia
Bandura, A. (1997). Self-efficacy: The exercise of control. W. H. Freeman.
Barroso, C., Ganley, C. M., McGraw, A. L., Geer, E. A., Hart, S. A., & Daucourt, M. C. (2021). A meta-analysis of the relation between math anxiety and math achievement. Psychological Bulletin, 147(2), 134–168. https://doi.org/10.1037/bul0000307
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Bayram-Ozdemir, S., & Özdemir, M. (2020). The role of perceived inter-ethnic classroom climate in adolescents’ engagement in ethnic victimization: For whom does it work? Journal of Youth and Adolescence, 49(6), 1328–1340. https://doi.org/10.1007/s10964-020-01228-8
Bell, A., Fairbrother, M., & Jones, K. (2019). Fixed and random effects models: Making an informed choice. Quality & Quantity, 53, 1051–1074. https://doi.org/10.1007/s11135-018-0802-x
Bellei, C. (2013). El gran experimento: Mercado y privatización de la educación chilena. Revista de Sociología.
Bellei, C., Orellana, V., & Canales, M. (2020). Elección de escuela en la clase alta chilena. Comunidad, identidad y cierre social. Archivos Analíticos de Políticas Educativas, 28(5). https://doi.org/10.14507/epaa.28.3884
Bellei, C., Valenzuela, J., & De los Rios, D. (2010). Segregación escolar en chile. In Fin de Ciclo: Cambios en la Gobernanza del Sistema Educativo (pp. 209–229).
Berkowitz, R., Moore, H., Astor, R. A., & Benbenishty, R. (2017). A research synthesis of the associations between socioeconomic background, inequality, school climate, and academic achievement. Review of Educational Research, 87(2), 425–469. https://doi.org/10.3102/0034654316669821
Bieg, M., Goetz, T., Wolter, I., & Hall, N. C. (2015). Gender stereotype endorsement differentially predicts girls’ and boys’ trait-state discrepancy in math anxiety. Frontiers in Psychology, 6, 1404. https://doi.org/10.3389/fpsyg.2015.01404
Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy & Practice, 5(1), 7–74.
Blok, L. (2016). Inequidad en el acceso a la educación superior: Análisis del programa propedéutico de la USACH [Master’s thesis, Universidad de Santiago de Chile]. https://www.paiep.usach.cl/sites/paiep/files/documentos/blok_2016_analisis_del_programa_propedeutico.pdf
Boaler, J. (2019). Developing mathematical mindsets: The need to interact with numbers flexibly and conceptually. American Educator, 42(4), 28.
Borgen, N. T., Zachrisson, H. D., & Sandsør, A. M. J. (2025). Do schools equalize or exacerbate inequality? Between-school variability in the relationship between socioeconomic background and academic achievement. SocArXiv preprint. https://osf.io/preprints/socarxiv/tw9r4
Bourdieu, P. (1979). La distinción: Criterios y bases sociales del gusto. Les Éditions de Minuit.
Bourdieu, P. (2000). Capital cultural, escuela y espacio social. Siglo XXI Editores.
Bourdieu, P., & Passeron, J.-C. (1977). La reproduction: Éléments pour une théorie du système d’enseignement. Les Éditions de Minuit.
Bucarey, A., Ugarte, G., & Urzúa, S. (2014). El efecto de la educación preescolar en chile [Documento de trabajo]. CLAPES-UC. https://s3.us-east-2.amazonaws.com/assets.clapesuc.cl/media_post_4623_eec8ded109.pdf
Budnevich Portales, C. (2020). “La composición social de las escuelas y su relación con el rendimiento académico en lenguaje y matemática de los estudiantes secundarios chilenos”. https://repositorio.uchile.cl/handle/2250/184386; Universidad de Chile.
Busso, M., & Frisancho, V. (2021). Good peers have asymmetric gendered effects on female educational outcomes: Experimental evidence from mexico (IDB-WP-1220). Inter-American Development Bank. https://doi.org/10.18235/0003247
Calarco, J. (2020). Avoiding us versus them: How schools’ dependence on privileged “helicopter” parents influences class gaps in parental engagement. Sociology of Education, 93(1), 31–52. https://doi.org/10.1177/0038040719882325
Carey, E., Devine, A., Hill, F., & Szűcs, D. (2016). The chicken or the egg? The direction of the relationship between mathematics anxiety and mathematics performance. Frontiers in Psychology, 6, 1987. https://doi.org/10.3389/fpsyg.2015.01987
Carey, E., Devine, A., Hill, F., & Szűcs, D. (2019). The chicken or the egg? The direction of the relationship between mathematics anxiety and mathematics performance. Frontiers in Psychology, 10, 1086.
Carvajal Monardes, J. (2022). Malestar emocional en contextos de desigualdad educativa: Experiencias de estudiantes de enseñanza media en educación online [Master’s thesis, Universidad de Chile]. https://repositorio.uchile.cl/handle/2250/193522
Ceron, F. I., Bol, T., & Werfhorst, H. G. van de. (2022). The dynamics of achievement inequality: The role of performance and choice in chile. International Journal of Educational Development, 92(C), None. https://doi.org/10.1016/j.ijedudev.2022.102628
Cerón, G., Bol, T., & Werfhorst, H. G. van de. (2022). Socioeconomic inequality in educational achievement: A comparative perspective. Comparative Education Review.
Comtois, D. (2024). Summarytools: Tools to quickly and neatly summarize data. https://cran.r-project.org/package=summarytools
Delgado-Floody, P., Cristi-Montero, C., Jerez-Mayorga, D., Ruiz-Ariza, A., Guzmán-Guzmán, I. P., Álvarez, C., Gómez-López, M., Carter-Thuillier, B., & Caamaño-Navarrete, F. (2024). Exploring the mediating role of promoting school physical activity on the relationship between low socioeconomic status and academic achievement and school climate: Evidence from 4,990 chilean schools. Front. Public Health, 12, 1426108.
Devine, A., Fawcett, K., Szűcs, D., & Dowker, A. (2012). Gender differences in mathematics anxiety and the relation to mathematics performance while controlling for test anxiety. Behavioral and Brain Functions, 8(1), 33. https://doi.org/10.1186/1744-9081-8-33
Dirección de Presupuestos. (2012). Evaluación de impacto del sistema de protección integral a la infancia “chile crece contigo”. Ministerio de Hacienda, Gobierno de Chile. https://www.dipres.gob.cl/597/articles-189318_informe_final.pdf
Dowker, A., Sarkar, A., & Looi, C. I. (2016). Mathematics anxiety: What have we learned in 60 years? Frontiers in Psychology, 7, 508.
Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychological Methods, 12(2), 121–138. https://doi.org/10.1037/1082-989X.12.2.121
Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: Attentional control theory. Emotion, 7(2), 336–353.
Fairbrother, M. (2014). Two multilevel modeling techniques for analyzing comparative longitudinal survey datasets. Political Science Research and Methods, 2(1), 119–140. https://doi.org/10.1017/psrm.2013.24
Falabella, A., & Vega, L. F. D. la. (2016). Políticas de responsabilización por desempeño escolar: Un debate a partir de la literatura internacional y el caso chileno. Estudios Pedagógicos, 42(2), 395–413. https://doi.org/10.4067/S0718-07052016000200023
Fraser, B. J. (2012). Classroom learning environments: Retrospect, context, and prospect. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 1191–1239). Springer.
Geary, D. C., Hoard, M. K., Nugent, L., & Scofield, J. E. (2021). In-class attention, spatial ability, and mathematics anxiety predict across-grade gains in adolescents’ mathematics achievement. Journal of Educational Psychology, 113(4), 754.
Global Education Monitoring Report Team, Laboratory of Education Research and Innovation for Latin America and the Caribbean, & UNESCO Office Santiago and Regional Bureau for Education in Latin America and the Caribbean. (2020). Global education monitoring report: Latin america and the caribbean - education and inclusion. UNESCO Publishing.
Goetz, T., Bieg, M., Lüdtke, O., Pekrun, R., & Hall, N. C. (2013). Do girls really experience more anxiety in mathematics? Psychological Science, 24(10), 2079–2087. https://doi.org/10.1177/0956797613486989
González, I., Espinosa, J., & Soledad, G. (2025). Construcción y validación del instrumento de medición “ansiedad generalizada en matemáticas” para estudiantes de bachillerato de la universidad de guadalajara: Construction and validation of the measuring instrument “generalized anxiety in mathematics” for high school students at the university of guadalajara. LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades, 6. https://doi.org/10.56712/latam.v6i2.3771
Guo, Z. (2025). Family socioeconomic status and academic achievement: A narrative review of mechanisms and contexts. Educational Review.
Gutiérrez, G. (2023). Is it socioeconomic or academic? Disentangling sources of peer effects on student achievement. British Journal of Sociology of Education, 44(1), 144–163. https://doi.org/10.1080/01425692.2022.2137465
Hascoët, M., Giaconi, V., & Jamain, L. (2021). Family socioeconomic status and parental expectations affect mathematics achievement in a national sample of chilean students. International Journal of Behavioral Development, 45(2), 122–132. https://doi.org/10.1177/0165025420965731
Hattie, J. (2009b). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge.
Hattie, J. (2009a). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge.
Hayes, A. F. (2022). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (3rd ed.). The Guilford Press.
Hembree, R. (1990b). The nature, effects, and relief of mathematics anxiety. Journal for Research in Mathematics Education, 21(1), 33–46. https://doi.org/10.2307/749455
Hembree, R. (1990a). The nature, effects, and relief of mathematics anxiety. Journal for Research in Mathematics Education, 21(1), 33–46.
Hopko, D. R., Mahadevan, R., Bare, R. L., & Hunt, M. K. (2003). The abbreviated math anxiety scale (AMAS): Construction, validity, and reliability. Assessment, 10(2), 178–182. https://doi.org/10.1177/1073191103010002008
Hox, J. J., Moerbeek, M., & Schoot, R. van de. (2017b). Multilevel analysis: Techniques and applications (3rd ed.). Routledge.
Hox, J. J., Moerbeek, M., & Schoot, R. van de. (2017a). Multilevel analysis: Techniques and applications (3rd ed.). Routledge.
Huang, M., & Liu, X. (2025). Pathways to equity: A mediation analysis of gender, SES, and mathematics achievement using PISA 2022 UK data. International Journal of Educational Research, 133, 102666. https://doi.org/10.1016/j.ijer.2025.102666
Hyde, J. S., Fennema, E., Ryan, M., Frost, L. A., & Hopp, C. (1990). Gender comparisons of mathematics attitudes and affect: A meta-analysis. Psychology of Women Quarterly, 14(3), 299–324. https://doi.org/10.1111/j.1471-6402.1990.tb00022.x
Jakubowski, M., Gajderowicz, T., & Patrinos, H. A. (2025). COVID-19, school closures, and student learning outcomes. New global evidence from PISA. NPJ Sci. Learn., 10(1), 5. https://www.nature.com/articles/s41539-025-00297-3#citeas
Kersha, Y. (2020). School socioeconomic composition as a factor of educational inequality reproduction. Voprosy Obrazovaniya / Educational Studies Moscow, 2020(4), 85–112. https://doi.org/10.17323/1814-9545-2020-4-85-112
Lareau, A. (2003). Unequal childhoods: Class, race, and family life. University of California Press.
Lau, N. T. T., Rubinsten, O., Lee, M. W., & Ansari, D. (2022). Disentangling the individual and contextual effects of math anxiety: A multilevel analysis of 15-year-old students across 65 countries. Proceedings of the National Academy of Sciences, 119(14), e2115855119. https://doi.org/10.1073/pnas.2115855119
Lin, Y., Durbin, J. M., & Rancer, A. S. (2017). Perceived instructor argumentativeness, verbal aggressiveness, and classroom communication climate in relation to student state motivation and math anxiety. Communication Education, 66(3), 330–349. https://doi.org/10.1080/03634523.2016.1245427
Madjar, N., Zalsman, G., Weizman, A., Lev-Ran, S., & Shoval, G. (2018). Predictors of developing mathematics anxiety among middle-school students: A 2-year prospective study. International Journal of Psychology, 53(6), 426–432.
Maloney, E. A., & Beilock, S. L. (2012). Math anxiety: Who has it, why it develops, and how to guard against it. Trends in Cognitive Sciences, 16(8), 404–406.
Marsh, H. W., & Hau, K.-T. (2003). Big-fish-little-pond effect on academic self-concept: A cross-cultural (26-country) test of the negative effects of academically selective schools. American Psychologist, 58(5), 364–376. https://doi.org/10.1037/0003-066X.58.5.364
Martı́n-Puga, M. E., Justicia-Galiano, M. J., Gómez-Pérez, M. M., & Pelegrina, S. (2022). Psychometric properties, factor structure, and gender and educational level invariance of the abbreviated math anxiety scale (AMAS) in spanish children and adolescents. Assessment, 29(3), 425–440.
Meneses, A., Ortega, L., Kuzmanic, D., & Valenzuela, J. P. (2025). Desigualdades socioeconómicas en el SIMCE de matemática: Efectos individuales, escolares y de contexto. Revista a Definir.
Ministerio de Educación de Chile, & Unidad de Currículum y Evaluación. (2023). PISA 2022: Informe nacional chile. MINEDUC.
Mizala, A., & Torche, F. (2012). Bringing the schools back in: Stratification of educational achievement in the chilean voucher system. International Journal of Educational Development, 32(1), 132–144.
Neuman, M. (2022). PISA data clusters reveal student and school inequality that affects results. PLOS ONE, 17(5), e0267040. https://doi.org/10.1371/journal.pone.0267040
O’Hara, G., Kennedy, H., Naoufal, M., & Montreuil, T. (2022). The role of the classroom learning environment in students’ mathematics anxiety: A scoping review. British Journal of Educational Psychology, 92(4), 1458–1486. https://doi.org/10.1111/bjep.12510
OECD. (2023a). PISA 2022 country note: chile. OECD Publishing.
OECD. (2023b). PISA 2022 results: Student performance, equity and well-being. OECD Publishing.
OECD. (2023c). PISA 2022 results. Volume II: Learning during and after COVID-19. OECD Publishing. https://www.oecd.org
OECD. (2025). Teacher support for student learning: Insights from PISA. Organisation for Economic Co-operation; Development. https://www.oecd.org/content/dam/oecd/en/publications/reports/2025/06/teacher-support-for-student-learning_1433548a/97b3a899-en.pdf
Ortega, P. J. (2023). Factores asociados al rendimiento en matemáticas de estudiantes españoles en educación primaria. REICE Rev. Iberoam. Sobre Calid. Efic. Cambio Educ., 21(3), 175–191.
Otero, G., Carranza, R., & Contreras, D. (2021). Spatial divisions of poverty and wealth: Does segregation affect educational achievement? Socio-Economic Review, 21(1), 617–641. https://doi.org/10.1093/ser/mwab022
Pekrun, R. (2006b). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18(4), 315–341. https://doi.org/10.1007/s10648-006-9029-9
Pekrun, R. (2006a). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18(4), 315–341.
Pintrich, P. R. (2004). A conceptual framework for assessing motivation and self-regulated learning in college students. Educational Psychology Review, 16(4), 385–407.
Qiu, F. (2022). Reviewing the role of positive classroom climate in improving english as a foreign language students’ social interactions in the online classroom. Frontiers in Psychology, 13, 1012524. https://doi.org/10.3389/fpsyg.2022.1012524
R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Ramirez, G., Shaw, S. T., & Maloney, E. A. (2018). Math anxiety: Past research, promising interventions, and a new interpretation framework. Educational Psychologist, 53(3), 145–164. https://doi.org/10.1080/00461520.2018.1447384
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Sage.
Richardson, F. C., & Suinn, R. M. (1972). The mathematics anxiety rating scale: Psychometric data. Journal of Counseling Psychology, 19(6), 551–554. https://doi.org/10.1037/h0033456
Rosenqvist, E., & Brandén, M. (2024). School composition and academic decisions. European Sociological Review, 41(2), 232–247. https://doi.org/10.1093/esr/jcae031
Rubie-Davies, C. (2009). Teacher expectations and perceptions of student attributes: Is there a relationship? The British Journal of Educational Psychology, 80, 121–135. https://doi.org/10.1348/000709909X466334
Sammallahti, E., Finell, J., Jonsson, B., & Korhonen, J. (2023). A meta-analysis of math anxiety interventions. Journal of Numerical Cognition, 9(2), 346–362. https://doi.org/10.5964/jnc.8401
Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and advanced multilevel modeling (2nd ed.). Sage.
Stella, M. (2021). Network psychometrics and cognitive network science open new ways for detecting, understanding and tackling the complexity of math anxiety: A review. arXiv. https://doi.org/10.48550/arXiv.2108.13800
Szűcs, D., & Mammarella, I. C. (2020). Math anxiety. International Bureau of Education, UNESCO, Educational Practices Series. https://www.ibe.unesco.org/en
Tian, L., Hui, N., & Lei, H. (2025). Teacher feedback quality, self-regulated learning, and mathematics anxiety: A structural equation modeling approach. Learning and Instruction.
Treviño, E., Valenzuela, J. P., Villalobos, C., & Béjares, C. (2018). Agrupamiento por habilidad académica en el sistema escolar: Nueva evidencia para comprender las desigualdades del sistema educativo chileno. Revista Mexicana de Investigación Educativa, 23(76), 45–71. https://www.scielo.org.mx/pdf/rmie/v23n76/1405-6666-rmie-23-76-45.pdf
UNESCO. (2020). Global education monitoring report 2020: Inclusion and education: All means all. UNESCO.
Valenzuela, J. P., Bellei, C., & Ríos, D. de los. (2014). Segregación escolar en chile. In C. Bellei, D. Carrasco, & J. P. Valenzuela (Eds.), Ecos de la revolución pingüina (pp. 257–292). LOM.
van de Werfhorst, H. G. (2018). Early tracking and socioeconomic inequality in academic achievement: Studying reforms in nine countries. Research in Social Stratification and Mobility, 58, 22–32. https://doi.org/https://doi.org/10.1016/j.rssm.2018.09.002
Wang, M.-T., & Degol, J. L. (2016). School climate: A review of the construct, measurement, and impact on student outcomes. Educational Psychology Review, 28(2), 315–352. https://doi.org/10.1007/s10648-015-9319-1
Willms, J. D. (1986). Social class segregation and its relationship to pupils’ examination results in scotland. American Sociological Review.
Willms, J. D. (2010). School composition and contextual effects on student outcomes. Teachers College Record, 112(4), 1008–1037.
Young, C. B., Wu, S. S., & Menon, V. (2012a). The neurodevelopmental basis of math anxiety. Psychological Science, 23(5), 492–501. https://doi.org/10.1177/0956797611429134
Young, C. B., Wu, S., & Menon, V. (2012b). The neurodevelopmental basis of math anxiety. Psychological Science, 23(5), 492–501. https://doi.org/10.1177/0956797611429134
Youssef, A., & Alibraheim, M. (2025). Self-regulated learning strategies and anxiety in quantitative courses. Journal of Educational Psychology.
Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive perspective. Handbook of Self-Regulation, 13–39.