Referencias
Agencia de Calidad de la Educación. (2023a). Informe de resultados
educativos 2022. Tomo 2: Factores asociados a los resultados
educativos. Gobierno de Chile, Agencia de Calidad de la Educación.
https://www.agenciaeducacion.cl/
Agencia de Calidad de la Educación. (2023b). Informe nacional de
resultados: Sistema de evaluación de aprendizajes
2023. Agencia de Calidad de la Educación.
Agencia de Calidad de la Educación. (2023c). Resultados nacionales y
factores asociados: Informe 2023. Gobierno de Chile.
Aguinis, H., Gottfredson, N. M., & Culpepper, S. A. (2013).
Best-practice recommendations for estimating cross-level interaction
effects using multilevel modeling. Journal of Management,
39(6), 1490–1528. https://doi.org/10.1177/0149206313478188
Arruda Raposo, I. P. de, & Gonçalves, M. B. C. (2020). Peer effects
and educational achievement: Evidence of causal effects using age at
school entry as exogenous variation for peer quality. EconomiA,
21(1), 18–37.
Ashcraft, M. H. (2002). Math anxiety: Personal, educational, and
cognitive consequences. Current Directions in Psychological
Science, 11(5), 181–185. https://doi.org/10.1111/1467-8721.00196
Ashcraft, M. H., & Krause, J. A. (2007). Working memory, math
performance, and math anxiety. Psychonomic Bulletin &
Review, 14(2), 243–248.
Ashcraft, M. H., & Moore, A. M. (2009). Mathematics anxiety and the
affective drop in performance. Journal of Psychoeducational
Assessment, 27(3), 197–205. https://doi.org/10.1177/0734282908330580
Ashcraft, M. H., & Ridley, K. (2005). Math anxiety and its cognitive
consequences: A tutorial review. In J. I. D. Campbell (Ed.), The
handbook of mathematical cognition (pp. 315–327). Psychology Press.
Atalah, E., Cordero, M., Guerra, M. E., Quezada, S., Carrasco, X., &
Romo, M. (2014). Monitoreo de los indicadores del programa “chile
crece contigo” 2008–2011. Revista Chilena de Pediatría,
85(5), 565–573. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0370-41062014000500007
Banco Mundial. (2021). La billonaria deuda con los estudiantes en
pandemia. https://www.bancomundial.org/es/news/feature/2021/12/23/la-billonaria-deuda-con-los-estudiantes-en-pandemia
Bandura, A. (1997). Self-efficacy: The exercise of control. W.
H. Freeman.
Barroso, C., Ganley, C. M., McGraw, A. L., Geer, E. A., Hart, S. A.,
& Daucourt, M. C. (2021). A meta-analysis of the relation between
math anxiety and math achievement. Psychological Bulletin,
147(2), 134–168. https://doi.org/10.1037/bul0000307
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting
linear mixed-effects models using lme4.
Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Bayram-Ozdemir, S., & Özdemir, M. (2020). The role of perceived
inter-ethnic classroom climate in adolescents’ engagement in ethnic
victimization: For whom does it work? Journal of Youth and
Adolescence, 49(6), 1328–1340. https://doi.org/10.1007/s10964-020-01228-8
Bell, A., Fairbrother, M., & Jones, K. (2019). Fixed and random
effects models: Making an informed choice. Quality &
Quantity, 53, 1051–1074. https://doi.org/10.1007/s11135-018-0802-x
Bellei, C. (2013). El gran experimento: Mercado y
privatización de la educación chilena.
Revista de Sociología.
Bellei, C., Orellana, V., & Canales, M. (2020). Elección de escuela
en la clase alta chilena. Comunidad, identidad y cierre social.
Archivos Analíticos de Políticas Educativas, 28(5). https://doi.org/10.14507/epaa.28.3884
Bellei, C., Valenzuela, J., & De los Rios, D. (2010). Segregación
escolar en chile. In Fin de Ciclo: Cambios en la Gobernanza del
Sistema Educativo (pp. 209–229).
Berkowitz, R., Moore, H., Astor, R. A., & Benbenishty, R. (2017). A
research synthesis of the associations between socioeconomic background,
inequality, school climate, and academic achievement. Review of
Educational Research, 87(2), 425–469. https://doi.org/10.3102/0034654316669821
Bieg, M., Goetz, T., Wolter, I., & Hall, N. C. (2015). Gender
stereotype endorsement differentially predicts girls’ and boys’
trait-state discrepancy in math anxiety. Frontiers in
Psychology, 6, 1404. https://doi.org/10.3389/fpsyg.2015.01404
Black, P., & Wiliam, D. (1998). Assessment and classroom learning.
Assessment in Education: Principles, Policy & Practice,
5(1), 7–74.
Blok, L. (2016). Inequidad en el acceso a la educación superior:
Análisis del programa propedéutico de la USACH [Master’s thesis,
Universidad de Santiago de Chile]. https://www.paiep.usach.cl/sites/paiep/files/documentos/blok_2016_analisis_del_programa_propedeutico.pdf
Boaler, J. (2019). Developing mathematical mindsets: The need to
interact with numbers flexibly and conceptually. American
Educator, 42(4), 28.
Borgen, N. T., Zachrisson, H. D., & Sandsør, A. M. J. (2025). Do
schools equalize or exacerbate inequality? Between-school variability in
the relationship between socioeconomic background and academic
achievement. SocArXiv preprint. https://osf.io/preprints/socarxiv/tw9r4
Bourdieu, P. (1979). La distinción: Criterios y bases sociales del
gusto. Les Éditions de Minuit.
Bourdieu, P. (2000). Capital cultural, escuela y espacio
social. Siglo XXI Editores.
Bourdieu, P., & Passeron, J.-C. (1977). La reproduction:
Éléments pour une théorie du
système d’enseignement. Les Éditions de
Minuit.
Bucarey, A., Ugarte, G., & Urzúa, S. (2014). El efecto de la
educación preescolar en chile [Documento de trabajo]. CLAPES-UC. https://s3.us-east-2.amazonaws.com/assets.clapesuc.cl/media_post_4623_eec8ded109.pdf
Budnevich Portales, C. (2020). “La composición
social de las escuelas y su relación con el rendimiento
académico en lenguaje y matemática de los
estudiantes secundarios chilenos”. https://repositorio.uchile.cl/handle/2250/184386;
Universidad de Chile.
Busso, M., & Frisancho, V. (2021). Good peers have asymmetric
gendered effects on female educational outcomes: Experimental evidence
from mexico (IDB-WP-1220). Inter-American Development Bank. https://doi.org/10.18235/0003247
Calarco, J. (2020). Avoiding us versus them: How schools’ dependence on
privileged “helicopter” parents influences class gaps in
parental engagement. Sociology of Education, 93(1),
31–52. https://doi.org/10.1177/0038040719882325
Carey, E., Devine, A., Hill, F., & Szűcs, D. (2016). The chicken or
the egg? The direction of the relationship between mathematics anxiety
and mathematics performance. Frontiers in Psychology,
6, 1987. https://doi.org/10.3389/fpsyg.2015.01987
Carey, E., Devine, A., Hill, F., & Szűcs, D. (2019). The chicken or
the egg? The direction of the relationship between mathematics anxiety
and mathematics performance. Frontiers in Psychology,
10, 1086.
Carvajal Monardes, J. (2022). Malestar emocional en contextos de
desigualdad educativa: Experiencias de estudiantes de
enseñanza media en educación online
[Master’s thesis, Universidad de Chile]. https://repositorio.uchile.cl/handle/2250/193522
Ceron, F. I., Bol, T., & Werfhorst, H. G. van de. (2022). The
dynamics of achievement inequality: The role of performance and choice
in chile. International Journal of Educational Development,
92(C), None. https://doi.org/10.1016/j.ijedudev.2022.102628
Cerón, G., Bol, T., & Werfhorst, H. G. van de. (2022). Socioeconomic
inequality in educational achievement: A comparative perspective.
Comparative Education Review.
Comtois, D. (2024). Summarytools: Tools to quickly and neatly
summarize data. https://cran.r-project.org/package=summarytools
Delgado-Floody, P., Cristi-Montero, C., Jerez-Mayorga, D., Ruiz-Ariza,
A., Guzmán-Guzmán, I. P., Álvarez, C., Gómez-López, M.,
Carter-Thuillier, B., & Caamaño-Navarrete, F. (2024). Exploring the
mediating role of promoting school physical activity on the relationship
between low socioeconomic status and academic achievement and school
climate: Evidence from 4,990 chilean schools. Front. Public
Health, 12, 1426108.
Devine, A., Fawcett, K., Szűcs, D., & Dowker, A. (2012). Gender
differences in mathematics anxiety and the relation to mathematics
performance while controlling for test anxiety. Behavioral and Brain
Functions, 8(1), 33. https://doi.org/10.1186/1744-9081-8-33
Dirección de Presupuestos. (2012). Evaluación de impacto del sistema
de protección integral a la infancia “chile crece
contigo”. Ministerio de Hacienda, Gobierno de Chile. https://www.dipres.gob.cl/597/articles-189318_informe_final.pdf
Dowker, A., Sarkar, A., & Looi, C. I. (2016). Mathematics anxiety:
What have we learned in 60 years? Frontiers in Psychology,
7, 508.
Enders, C. K., & Tofighi, D. (2007). Centering predictor variables
in cross-sectional multilevel models: A new look at an old issue.
Psychological Methods, 12(2), 121–138. https://doi.org/10.1037/1082-989X.12.2.121
Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007).
Anxiety and cognitive performance: Attentional control theory.
Emotion, 7(2), 336–353.
Fairbrother, M. (2014). Two multilevel modeling techniques for analyzing
comparative longitudinal survey datasets. Political Science Research
and Methods, 2(1), 119–140. https://doi.org/10.1017/psrm.2013.24
Falabella, A., & Vega, L. F. D. la. (2016). Políticas
de responsabilización por desempeño escolar:
Un debate a partir de la literatura internacional y el caso chileno.
Estudios Pedagógicos, 42(2), 395–413. https://doi.org/10.4067/S0718-07052016000200023
Fraser, B. J. (2012). Classroom learning environments: Retrospect,
context, and prospect. In B. J. Fraser, K. Tobin, & C. J. McRobbie
(Eds.), Second international handbook of science education (pp.
1191–1239). Springer.
Geary, D. C., Hoard, M. K., Nugent, L., & Scofield, J. E. (2021).
In-class attention, spatial ability, and mathematics anxiety predict
across-grade gains in adolescents’ mathematics achievement. Journal
of Educational Psychology, 113(4), 754.
Global Education Monitoring Report Team, Laboratory of Education
Research and Innovation for Latin America and the Caribbean, &
UNESCO Office Santiago and Regional Bureau for Education in Latin
America and the Caribbean. (2020). Global education monitoring
report: Latin america and the caribbean - education and inclusion.
UNESCO Publishing.
Goetz, T., Bieg, M., Lüdtke, O., Pekrun, R., & Hall, N. C. (2013).
Do girls really experience more anxiety in mathematics?
Psychological Science, 24(10), 2079–2087. https://doi.org/10.1177/0956797613486989
González, I., Espinosa, J., & Soledad, G. (2025). Construcción y
validación del instrumento de medición “ansiedad generalizada en
matemáticas” para estudiantes de bachillerato de la universidad
de guadalajara: Construction and validation of the measuring instrument
“generalized anxiety in mathematics” for high school
students at the university of guadalajara. LATAM Revista
Latinoamericana de Ciencias Sociales y Humanidades, 6. https://doi.org/10.56712/latam.v6i2.3771
Guo, Z. (2025). Family socioeconomic status and academic achievement: A
narrative review of mechanisms and contexts. Educational
Review.
Gutiérrez, G. (2023). Is it socioeconomic or academic? Disentangling
sources of peer effects on student achievement. British Journal of
Sociology of Education, 44(1), 144–163. https://doi.org/10.1080/01425692.2022.2137465
Hascoët, M., Giaconi, V., & Jamain, L. (2021). Family socioeconomic
status and parental expectations affect mathematics achievement in a
national sample of chilean students. International Journal of
Behavioral Development, 45(2), 122–132. https://doi.org/10.1177/0165025420965731
Hattie, J. (2009b). Visible learning: A synthesis of over 800
meta-analyses relating to achievement. Routledge.
Hattie, J. (2009a). Visible learning: A synthesis of over 800
meta-analyses relating to achievement. Routledge.
Hayes, A. F. (2022). Introduction to mediation, moderation, and
conditional process analysis: A regression-based approach (3rd
ed.). The Guilford Press.
Hembree, R. (1990b). The nature, effects, and relief of mathematics
anxiety. Journal for Research in Mathematics Education,
21(1), 33–46. https://doi.org/10.2307/749455
Hembree, R. (1990a). The nature, effects, and relief of mathematics
anxiety. Journal for Research in Mathematics Education,
21(1), 33–46.
Hopko, D. R., Mahadevan, R., Bare, R. L., & Hunt, M. K. (2003). The
abbreviated math anxiety scale (AMAS): Construction, validity, and
reliability. Assessment, 10(2), 178–182. https://doi.org/10.1177/1073191103010002008
Hox, J. J., Moerbeek, M., & Schoot, R. van de. (2017b).
Multilevel analysis: Techniques and applications (3rd ed.).
Routledge.
Hox, J. J., Moerbeek, M., & Schoot, R. van de. (2017a).
Multilevel analysis: Techniques and applications (3rd ed.).
Routledge.
Huang, M., & Liu, X. (2025). Pathways to equity: A mediation
analysis of gender, SES, and mathematics achievement using PISA 2022 UK
data. International Journal of Educational Research,
133, 102666. https://doi.org/10.1016/j.ijer.2025.102666
Hyde, J. S., Fennema, E., Ryan, M., Frost, L. A., & Hopp, C. (1990).
Gender comparisons of mathematics attitudes and affect: A meta-analysis.
Psychology of Women Quarterly, 14(3), 299–324. https://doi.org/10.1111/j.1471-6402.1990.tb00022.x
Jakubowski, M., Gajderowicz, T., & Patrinos, H. A. (2025).
COVID-19, school closures, and student learning outcomes.
New global evidence from PISA. NPJ Sci. Learn.,
10(1), 5. https://www.nature.com/articles/s41539-025-00297-3#citeas
Kersha, Y. (2020). School socioeconomic composition as a factor of
educational inequality reproduction. Voprosy Obrazovaniya /
Educational Studies Moscow, 2020(4), 85–112. https://doi.org/10.17323/1814-9545-2020-4-85-112
Lareau, A. (2003). Unequal childhoods: Class, race, and family
life. University of California Press.
Lau, N. T. T., Rubinsten, O., Lee, M. W., & Ansari, D. (2022).
Disentangling the individual and contextual effects of math anxiety: A
multilevel analysis of 15-year-old students across 65 countries.
Proceedings of the National Academy of Sciences,
119(14), e2115855119. https://doi.org/10.1073/pnas.2115855119
Lin, Y., Durbin, J. M., & Rancer, A. S. (2017). Perceived instructor
argumentativeness, verbal aggressiveness, and classroom communication
climate in relation to student state motivation and math anxiety.
Communication Education, 66(3), 330–349. https://doi.org/10.1080/03634523.2016.1245427
Madjar, N., Zalsman, G., Weizman, A., Lev-Ran, S., & Shoval, G.
(2018). Predictors of developing mathematics anxiety among middle-school
students: A 2-year prospective study. International Journal of
Psychology, 53(6), 426–432.
Maloney, E. A., & Beilock, S. L. (2012). Math anxiety: Who has it,
why it develops, and how to guard against it. Trends in Cognitive
Sciences, 16(8), 404–406.
Marsh, H. W., & Hau, K.-T. (2003). Big-fish-little-pond effect on
academic self-concept: A cross-cultural (26-country) test of the
negative effects of academically selective schools. American
Psychologist, 58(5), 364–376. https://doi.org/10.1037/0003-066X.58.5.364
Martı́n-Puga, M. E., Justicia-Galiano, M. J., Gómez-Pérez, M. M., &
Pelegrina, S. (2022). Psychometric properties, factor structure, and
gender and educational level invariance of the abbreviated math anxiety
scale (AMAS) in spanish children and adolescents.
Assessment, 29(3), 425–440.
Meneses, A., Ortega, L., Kuzmanic, D., & Valenzuela, J. P. (2025).
Desigualdades socioeconómicas en el SIMCE de
matemática: Efectos individuales, escolares y de contexto.
Revista a Definir.
Ministerio de Educación de Chile, & Unidad de Currículum y
Evaluación. (2023). PISA 2022: Informe nacional chile. MINEDUC.
Mizala, A., & Torche, F. (2012). Bringing the schools back in:
Stratification of educational achievement in the chilean voucher system.
International Journal of Educational Development,
32(1), 132–144.
Neuman, M. (2022). PISA data clusters reveal student and school
inequality that affects results. PLOS ONE, 17(5),
e0267040. https://doi.org/10.1371/journal.pone.0267040
O’Hara, G., Kennedy, H., Naoufal, M., & Montreuil, T. (2022). The
role of the classroom learning environment in students’ mathematics
anxiety: A scoping review. British Journal of Educational
Psychology, 92(4), 1458–1486. https://doi.org/10.1111/bjep.12510
OECD. (2023a). PISA 2022 country note: chile. OECD Publishing.
OECD. (2023b). PISA 2022 results: Student performance, equity and
well-being. OECD Publishing.
OECD. (2023c). PISA 2022 results. Volume II: Learning during and
after COVID-19. OECD Publishing. https://www.oecd.org
OECD. (2025). Teacher support for student learning: Insights from
PISA. Organisation for Economic Co-operation; Development. https://www.oecd.org/content/dam/oecd/en/publications/reports/2025/06/teacher-support-for-student-learning_1433548a/97b3a899-en.pdf
Ortega, P. J. (2023). Factores asociados al rendimiento en
matemáticas de estudiantes españoles en
educación primaria. REICE Rev. Iberoam. Sobre Calid.
Efic. Cambio Educ., 21(3), 175–191.
Otero, G., Carranza, R., & Contreras, D. (2021). Spatial divisions
of poverty and wealth: Does segregation affect educational achievement?
Socio-Economic Review, 21(1), 617–641. https://doi.org/10.1093/ser/mwab022
Pekrun, R. (2006b). The control-value theory of achievement emotions:
Assumptions, corollaries, and implications for educational research and
practice. Educational Psychology Review, 18(4),
315–341. https://doi.org/10.1007/s10648-006-9029-9
Pekrun, R. (2006a). The control-value theory of achievement emotions:
Assumptions, corollaries, and implications for educational research and
practice. Educational Psychology Review, 18(4),
315–341.
Pintrich, P. R. (2004). A conceptual framework for assessing motivation
and self-regulated learning in college students. Educational
Psychology Review, 16(4), 385–407.
Qiu, F. (2022). Reviewing the role of positive classroom climate in
improving english as a foreign language students’ social interactions in
the online classroom. Frontiers in Psychology, 13,
1012524. https://doi.org/10.3389/fpsyg.2022.1012524
R Core Team. (2024). R: A language and environment for statistical
computing. R Foundation for Statistical Computing. https://www.R-project.org/
Ramirez, G., Shaw, S. T., & Maloney, E. A. (2018). Math anxiety:
Past research, promising interventions, and a new interpretation
framework. Educational Psychologist, 53(3), 145–164.
https://doi.org/10.1080/00461520.2018.1447384
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear
models: Applications and data analysis methods (2nd ed.). Sage.
Richardson, F. C., & Suinn, R. M. (1972). The mathematics anxiety
rating scale: Psychometric data. Journal of Counseling
Psychology, 19(6), 551–554. https://doi.org/10.1037/h0033456
Rosenqvist, E., & Brandén, M. (2024). School composition and
academic decisions. European Sociological Review,
41(2), 232–247. https://doi.org/10.1093/esr/jcae031
Rubie-Davies, C. (2009). Teacher expectations and perceptions of student
attributes: Is there a relationship? The British Journal of
Educational Psychology, 80, 121–135. https://doi.org/10.1348/000709909X466334
Sammallahti, E., Finell, J., Jonsson, B., & Korhonen, J. (2023). A
meta-analysis of math anxiety interventions. Journal of Numerical
Cognition, 9(2), 346–362. https://doi.org/10.5964/jnc.8401
Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis:
An introduction to basic and advanced multilevel modeling (2nd
ed.). Sage.
Stella, M. (2021). Network psychometrics and cognitive network science
open new ways for detecting, understanding and tackling the complexity
of math anxiety: A review. arXiv. https://doi.org/10.48550/arXiv.2108.13800
Szűcs, D., & Mammarella, I. C. (2020). Math anxiety.
International Bureau of Education, UNESCO, Educational Practices Series.
https://www.ibe.unesco.org/en
Tian, L., Hui, N., & Lei, H. (2025). Teacher feedback quality,
self-regulated learning, and mathematics anxiety: A structural equation
modeling approach. Learning and Instruction.
Treviño, E., Valenzuela, J. P., Villalobos, C., & Béjares, C.
(2018). Agrupamiento por habilidad académica en el sistema
escolar: Nueva evidencia para comprender las desigualdades del sistema
educativo chileno. Revista Mexicana de Investigación
Educativa, 23(76), 45–71. https://www.scielo.org.mx/pdf/rmie/v23n76/1405-6666-rmie-23-76-45.pdf
UNESCO. (2020). Global education monitoring report 2020: Inclusion
and education: All means all. UNESCO.
Valenzuela, J. P., Bellei, C., & Ríos, D. de los. (2014).
Segregación escolar en chile. In C. Bellei, D. Carrasco,
& J. P. Valenzuela (Eds.), Ecos de la revolución
pingüina (pp. 257–292). LOM.
van de Werfhorst, H. G. (2018). Early tracking and socioeconomic
inequality in academic achievement: Studying reforms in nine countries.
Research in Social Stratification and Mobility, 58,
22–32. https://doi.org/https://doi.org/10.1016/j.rssm.2018.09.002
Wang, M.-T., & Degol, J. L. (2016). School climate: A review of the
construct, measurement, and impact on student outcomes. Educational
Psychology Review, 28(2), 315–352. https://doi.org/10.1007/s10648-015-9319-1
Willms, J. D. (1986). Social class segregation and its relationship to
pupils’ examination results in scotland. American Sociological
Review.
Willms, J. D. (2010). School composition and contextual effects on
student outcomes. Teachers College Record, 112(4),
1008–1037.
Young, C. B., Wu, S. S., & Menon, V. (2012a). The neurodevelopmental
basis of math anxiety. Psychological Science, 23(5),
492–501. https://doi.org/10.1177/0956797611429134
Young, C. B., Wu, S., & Menon, V. (2012b). The neurodevelopmental
basis of math anxiety. Psychological Science, 23(5),
492–501. https://doi.org/10.1177/0956797611429134
Youssef, A., & Alibraheim, M. (2025). Self-regulated learning
strategies and anxiety in quantitative courses. Journal of
Educational Psychology.
Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive
perspective. Handbook of Self-Regulation, 13–39.